
Crafting the
data plane

Carolina Fernández

➔ Carolina Fernández

➔ R&D Engineer at

➔ Working on networks, virtualisation, automation
 SDN, NFV applied to MEC, 5G, security, ...

➔ More interests: privacy et al
CarolinaFernandez

carolinafernandez.github.io

cfermart

2

Bio

1. Considerations
• Traditional vs flexible data plane

interactions
• Languages
• Aim & use cases

2. Portability
• Architectures and targets

3. Language elements
• Program structure
• Includes, metadata, headers
• Parsers
• Control blocks

Agenda

3

3. Language elements
• Tables, actions and primitives
• Stateful objects
• Recursiveness
• Checksum

4. Running & configuring in P4
• Compiling and running an app
• P4Runtime: configuring tables

5. Materials and references
• Pointers
• Tools

Considerations

Traditional vs flexible data plane interactions

5Source: https://bit.ly/p4d2-2018-spring

https://bit.ly/p4d2-2018-spring

Languages

6

Language Supporters First spec Current version Comments

POF (Protocol Oblivious Forwarding)

Protocol-independent instruction set to allow
defining the protocol stack & packet processing
(enhanced version of OpenFlow/1.3)

Huawei 2013 ?

P4 (Programming Protocol-Independent Packet
Processor)

High-level language to program SDN switch flexibly

Open Networking Foundation 2014/08
(idea in
2013/05)

v1.2.0 Specs
P4_14 / P414

P4_16 / P416

NPL (Network Programming Language)

Similar to P4

Broadcom 2019/06 v1.3

Some examples:

NOT used to:
● Insert rules in the forwarding table

(programming the control plane)
● Perform some typical operations at end

nodes (e.g., traffic generation, monitoring)

Aim & use cases (1)

Used to:
● Implement specific protocols
● Define specific, custom packets
● Maximise efficiency for low-level processing
● Benefit from typical operations at the switch

(e.g., mirroring packets) & at the end nodes
(e.g., move packet to CPU)

Examples:
● Layer 4 Load Balancer – SilkRoad
● Low Latency Congestion Control – NDP
● In-band Network Telemetry – INT
● In-Network DDoS detection
● In-Network caching and coordination –

NetCache / NetChain
● Consensus at network speed – NetPaxos
● Aggregation for MapReduce Applications

7

NOT used to:
● Insert rules in the forwarding table

(programming the control plane)
● Perform some typical operations at end

nodes (e.g., traffic generation, monitoring)

Aim & use cases (1)

Used to:
● Implement specific protocols
● Define specific, custom packets
● Maximise efficiency for low-level processing
● Benefit from typical operations at the switch

(e.g., mirroring packets) & at the end nodes
(e.g., move packet to CPU)

8

Typical data plane:
● Pipeline hard-coded by the vendor
● Set of default protocols supported

Virtualised data plane:
● Pipeline defined by the user
● Custom set of protocols supported

Examples:
● Layer 4 Load Balancer – SilkRoad
● Low Latency Congestion Control – NDP
● In-band Network Telemetry – INT
● In-Network DDoS detection
● In-Network caching and coordination –

NetCache / NetChain
● Consensus at network speed – NetPaxos
● Aggregation for MapReduce Applications

In-Band Network Telemetry (INT): monitoring network with a reduced footprint (CPU, I/O)
● Device internal state (packet counters, timestamps, etc) exported from data plane
● Use headers on traversing packets to include telemetry data by

 Re-using existing fields (e.g., custom TCP option) suitable for legacy networks; so that
internal transport devices allows the packets transparently

 Creating a custom packet format, where intermediate devices are able to parse them

 No need for external devices to constantly request information and less end-processing

9Source: https://p4.org/p4/inband-network-telemetry/ , https://www.youtube.com/watch?v=FOOL5BeHNVY

Aim & use cases (2): sample use case #1

https://p4.org/p4/inband-network-telemetry/
https://www.youtube.com/watch?v=FOOL5BeHNVY

In-Network DDoS Detection: monitoring network for quick identification and possible reaction
● Detect heavy flows based on data plane statistics and models on network threats
● Direct collaboration with network controller to i) provide statistic data (detection), ii) to

configure tables for any remediation action (mitigation)

 Less need for scaling (less external detection or even mitigation appliances/applications)

10Source: https://p4.org/p4/geant.html , https://wiki.geant.org/display/SIGNGN/2nd+SIG-NGN+Meeting

Aim & use cases (2): sample use case #2

https://p4.org/p4/geant.html
https://wiki.geant.org/display/SIGNGN/2nd+SIG-NGN+Meeting

Portability

Architectures and targets (1): definition

12

● The architecture is the programming model, the abstraction
○ Logical view of the pipeline of the virtual/hardware target (device): how the data plane programmer

thinks about the underlying platform
○ Enable programming multiple targets (switches, routers, NICs, OVSs)
○ Isolate programmer from the target details. Providers define architectures and compiler backends to

map architectures to targets

Term Explanation

Target Definition of specific HW implementation (e,g,, Tofino)

Architecture Set of programmable components, externs, fixed
components and their interfaces available (e,g,, PISA)

Platform Architecture implemented on a given target

Architectures and targets (2): examples

13Source: https://bit.ly/p4d2-2018-spring, https://p4.org/assets/p4_d2_2017_p4_16_tutorial.pdf

https://bit.ly/p4d2-2018-spring
https://p4.org/assets/p4_d2_2017_p4_16_tutorial.pdf

Language elements

P416’s language elements

15Source: https://p4.org/assets/p4_d2_2017_p4_16_tutorial.pdf

https://p4.org/assets/p4_d2_2017_p4_16_tutorial.pdf

P416’s program (1)

16Source: https://bit.ly/p4d2-2018-spring

https://bit.ly/p4d2-2018-spring

17Source: https://bit.ly/p4d2-2018-spring

P416’s program (2)

https://bit.ly/p4d2-2018-spring

Program elements (1)

18

Includes, metadata & headers/structs
● Import system or custom p4 files
● Define metadata
● Define structs
● Define headers (= struct + validity)

Control: Ingress/Egress
● Define behaviour of actions
● Define tables and link to actions
● Apply logic of tables based on

conditions

Deparser
● Emits a consolidated packet
● Headers only appended to the

packet if these are valid
● Headers are concatenated (in order

of increasing indexes)

Parser
● State machine with 1 start

(“accept”), 2 final (“accept”, “reject”)
states

● Extract the packet; move between
transitions based on the fields

Control: Checksum
● Verify checksum
● Compute checksum

Switch definition
● Sequence of elements (see numbers)

as sections in the program

2

3

4 5

6

7

1

NPL Elements not always explicitly defined. Special functions (IARB, MMU, EDB) transition to following stage

● System files or your own programs can be imported
● (P4) The import is typically done at the beginning of the file; but can also be imported in other locations

○ For instance; when assigned to a variable

Program elements (2): 1/includes

19

// core library needed for packet_in and packet_out definitions
include <core.p4>
// Include very simple switch architecture declarations
include "very_simple_switch_model.p4"

P4

Program elements (3): 1/metadata

20

Metadata is used as a way to persist intermediate values which are used in the logic of the program,
whether for ingress or egress processing. Life of such data constrained to the life of the packet

Types:Standard (intrinsic)
Incorporated in P4’s libraries

User-defined
Defined by user through a type / struct

action send_to_port(port) {
 standard_meta.egress_port = port;
}
action keep_result(bit<32> res) {
 user_meta.output = res;
}

P4

NPL Buses communicate results between ingress & egress
pipelines. Validity of data not constrained to packet’s
lifetime

Program elements (4): 1/metadata

21

Struct standard_metadata_t
contains the following fields.
These can be used to store
intermediate data

Source: https://github.com/p4lang/behavioral-model/blob/master/docs/simple_switch.md, https://bit.ly/p4d2-2018-spring

Ingress/egress movement >

Ingress/egress movement >

Ingress/egress movement >

Ingress/egress movement >

Checksum >

Recursive processing >
Recursive processing >

Recursive processing >

Recursive processing >

Queue management >

Queue management >

Ingress/egress movement >

Queue management >
Queue management >

https://github.com/p4lang/behavioral-model/blob/master/docs/simple_switch.md
https://bit.ly/p4d2-2018-spring

● Header: struct (C-like) + “validity” field (hidden)
○ Defines any kind of packet headers:

 IPv4, IPv6, Ethernet, ...
○ Methods: isValid(), setValid(), setInvalid()

● Protocol headers recognised & processed by the program
● Ordering

○ Order of fields in declaration order of fields in wire⇔ order of fields in wire
○ Packet has no gaps between fields
○ Packet header length must be multiple of 8 bytes

● Initially, all headers are invalid
○ Note: accessing invalid header fields leads to undefined

behaviours
○ Successful extract() of header → validity bit = “true”

Program elements (5): 1/headers

22

Source:
https://p4.org/assets/p4_d2_2017_p4_16_tutorial.pdf

P4

NPL ● Headers are structs

https://p4.org/assets/p4_d2_2017_p4_16_tutorial.pdf

Program elements (6): 2&7/parsers

23Source: https://p4.org/assets/p4_d2_2017_p4_16_tutorial.pdf

start ETH TCP

IPv4

accept

reject

ip4=1 tcp=1

Note: parsing and deparsing are done in a left-to-right fashion (e.g., as the packet would be pictured)

“start” node =~ “root_node: 1”; “accept” node =~ “end_node: 1”.
Re-entrant parser (invoked from further stages)

NPL

https://p4.org/assets/p4_d2_2017_p4_16_tutorial.pdf

Program elements (7): 2&7/parsers

24Source: https://bit.ly/p4d2-2018-spring

https://bit.ly/p4d2-2018-spring

● Must follow a Direct Acyclic Graph (DAG) processing (no loops)

● apply() performs match-action in a table
● apply() { … } uses match results to determine further processing

○ hit/miss clause
○ selected action clause

● Conditional statements
○ Comparison operations: (==, !=, >, <, >=, <=)
○ Logical operations (not, and, or)
○ Header validity checks (unknown results otherwise)

● During the the “apply” method evaluation, the “hit” field is set to
true if a match is found in the lookup-table. That can be used to
drive the execution of the control-flow in the control block that
invoked the table

Program elements (8): 4&5/control blocks

25

 apply {
 if (hdr.ipv4.isValid() &&
hdr.ipv4.ttl > 0) {
 ecmp_group.apply();
 ecmp_nhop.apply();
 }
 }

Internal evaluation
 if (ipv4_match.apply().hit) {
 // There was a hit
 } else {
 // There was a miss
 }

Program elements (9): 4&5/tables

26Source: https://p4.org/assets/p4-ws-2017-p4-architectures.pdf

Architecture Match kinds

Core exact, ternary (bitmask) , lpm (longest-
prefix)

V1Model range, selector

NPL (Logical) tables have different matches
(“index”, “hash”, ...). “Fields” assigned during
table “lookup” (instead of “apply”).

https://p4.org/assets/p4-ws-2017-p4-architectures.pdf

Program elements (9): 4&5/tables

27Source: https://p4.org/assets/p4-ws-2017-p4-architectures.pdf

Action data to be filled by control plane

Architecture Match kinds

Core exact, ternary (bitmask) , lpm (longest-
prefix)

V1Model range, selector

NPL (Logical) tables have different matches
(“index”, “hash”, ...). “Fields” assigned during
table “lookup” (instead of “apply”).

https://p4.org/assets/p4-ws-2017-p4-architectures.pdf

28

Action:
● May contain data values (written

via control plane, read by data
plane) -- the control plane can
influence dynamically the
behaviour of the data plane

● Primitives and other actions
called inside

● Operate on headers, metadata,
constants, action data

● Linked to 1..N tables
● Sequential execution
● By default: NoAction

 Directionless:
 {
 "table": "MyIngress.ipv4_lpm",
 "match": {
 "hdr.ipv4.dstAddr": ["10.0.2.2", 32]
 },
 "action_name": "MyIngress.ipv4_forward",
 "action_params": {
 "dstAddr": "00:00:00:02:02:00",
 "port": 2
 }
 },

Source: https://bit.ly/p4d2-2018-spring

Program elements (9): 4&5/actions

https://bit.ly/p4d2-2018-spring

Program elements (10): 4&5/primitives

Note: used inside actions, may affect metadata

Types:

● Basic: no operation, drop, emit,…
● Moving data: modify fields, shift, …
● Calculations: boolean, bitwise, hash-

based, random number generators,
min, max, …

● Headers: add, copy, remove, ...

● Stateful objects: count, execute
meter, read/write register, …

● Recursive processing: clone packet {in
ingress to reappear at egress, in
egress to reappear at egress},
resubmit (re-send after crossing
ingress pipeline), recirculate (re-send
after crossing both pipelines)

● Interaction: copy packet to CPU, …
● ...

NPL Very different set of primitives

29

Program elements (11): 4&5/stateful objects

30

● P4 objects can be classified by their lifespan
○ Stateless (transient): state is not preserved upon processing (life within packet)

■ Metadata
■ Packet headers

○ Stateful (persistent): state is preserved upon processing (outlives the packet)
■ Counters (associate data to entries in table; i.e., count #{packets, bytes, both})
■ Meters (colour & measure data rate: packets/second, bytes/second)
■ Registers (sort of counters that can be operated from actions in a general way)

● Aim: persist state for longer than one packet (stateful memories)
● Allow complex, interesting processing over data
● These require resources on the target and hence are managed by a compiler

Program elements (12): 4&5/recursiveness

31

Complex parsing may require a packet to be processed recursively by being:

● duplicated (cloned) – packet appears at egress (from ingress: CloneType.I2E, from egress: CloneType.E2E)
● re-sent from ingress to ingress (resubmitted) – e.g., further processing in ingress pipeline (ex., since P4

does now allow applying a table multiple times, this is the way to go);
● re-sent from egress to ingress (recirculated) – e.g., reuse original packet upon modifications in egress

pipeline

Note: implementation of such features depends on the architecture – e.g., in the “simple_switch”, the metadata is
only copied at the end of the current pipeline where the packet is cloned

Source: https://p4.org/p4-spec/docs/PSA-v1.1.0.html

https://p4.org/p4-spec/docs/PSA-v1.1.0.html

Program elements (12): 4&5/recursiveness

32

Complex parsing may require a packet to be processed recursively by being:

● duplicated (cloned) – packet appears at egress (from ingress: CloneType.I2E, from egress: CloneType.E2E)
● re-sent from ingress to ingress (resubmitted) – e.g., further processing in ingress pipeline (ex., since P4

does now allow applying a table multiple times, this is the way to go);
● re-sent from egress to ingress (recirculated) – e.g., reuse original packet upon modifications in egress

pipeline

Note: implementation of such features depends on the architecture – e.g., in the “simple_switch”, the metadata is
only copied at the end of the current pipeline where the packet is cloned

Source: https://p4.org/p4-spec/docs/PSA-v1.1.0.html

#define PKT_INSTANCE_TYPE_NORMAL 0
#define PKT_INSTANCE_TYPE_INGRESS_CLONE 1
#define PKT_INSTANCE_TYPE_EGRESS_CLONE 2
#define PKT_INSTANCE_TYPE_COALESCED 3
#define PKT_INSTANCE_TYPE_INGRESS_RECIRC 4
#define PKT_INSTANCE_TYPE_REPLICATION 5
#define PKT_INSTANCE_TYPE_RESUBMIT 6

https://p4.org/p4-spec/docs/PSA-v1.1.0.html

● Checksum can be verified and computed
○ Depends on switch architecture (e.g., in the VSS arch., the

“Checksum16” extern is available)
○ Verified (for error correction):

■ If checksum does not match, pkt is discarded
■ If checksum matches, removed from pkt payload

● “hdr.ipv4.hdrChecksum” is a calculated field ─ ensures the egress
packet has a correct IPv4 header checksum

○ Creates a list of fields that participate in checksum calculation,
and the calculation parameters

Program elements (13): 3&6/checksum

33

update_checksum(
 hdr.ipv4.isValid(),
 {
 hdr.ipv4.version,
 hdr.ipv4.ihl,
 hdr.ipv4.diffserv,
 hdr.ipv4.totalLen,
 hdr.ipv4.identification,
 hdr.ipv4.fragOffset,
 hdr.ipv4.ttl,
 hdr.ipv4.protocol,
 hdr.ipv4.srcAddr,
 hdr.ipv4.dstAddr
 },
 hdr.ipv4.hdrChecksum,
 HashAlgorithm.csum16);

Running & configuring
in P4

Compiling and running an app (1)

35

1

2

Source: https://bit.ly/p4d2-2018-spring

https://bit.ly/p4d2-2018-spring

Compiling and running an app (2)

36Source: https://bit.ly/p4d2-2018-spring

https://bit.ly/p4d2-2018-spring

P4Runtime: configuring tables (1)

37

P4Runtime provides Target & Protocol independent API to
control the data plane (fills it with commands and flows)

sX-commands.txt (send flows as commands)

table_set_default switchp_nhop drop
table_set_default switchp_tag add_switchp_tag 1
table_add switchp_nhop set_nhop 10.1.1.2/32 => 2 0
table_add switchp_nhop set_nhop 10.1.1.1/32 => 1 1

sX-runtime.json (send flows as structures)

 {
 "table": "MyIngress.switchp_nhop",
 "default_action": true,
 "action_name": "MyIngress.drop",
 "action_params": { }
 },
 {
 "table": "MyIngress.switchp_tag",
 "default_action": true,
 "action_name": "MyIngress.add_switchp_tag",
 "action_params": { }
 },
 {
 "table": "MyIngress.switchp_nhop",
 "match": {
 "hdr.ipv4.dstAddr": ["10.1.1.2", 32]
 },
 "action_name": "MyIngress.set_nhop",
 "action_params": {
 "port": 2,
 "remove_tags": 0
 }
 },
 {
 "table": "MyIngress.switchp_nhop",
 "match": {
 "hdr.ipv4.dstAddr": ["10.1.1.1", 32]
 },
 "action_name": "MyIngress.set_nhop",
 "action_params": {
 "port": 1,
 "remove_tags": 1
 }
 }

sX-runtime.json (send flows as structures)

{
 "target": "bmv2",
 "p4info": "build/clone.p4.p4info.txt",
 "bmv2_json": "build/clone.json",
 "table_entries": [
 …
]
}

table name action name match action arguments

Source: https://github.com/PathDump/SwitchPointer/blob/master/implementation/p4/apps/ping/s2-commands.txt

https://s3-us-west-2.amazonaws.com/p4runtime/docs/v1.0.0/P4Runtime-Spec.html
https://github.com/PathDump/SwitchPointer/blob/master/implementation/p4/apps/ping/s2-commands.txt

38

Implementation of load balancing to random host, based on a simple version of Equal-Cost Multipath Forwarding:
 “ecmp_group” uses a hash function (applied to a 5-tuple) to select one of two hosts
 “ecmp_nhop” defines (based on the hash) to which host the packet will be forwarded

 ecmp_select == 0 → packet to h2 (port==2); ecmp_select == 1 → packet to h3 (port == 3)
 “send_frame” forwards the packet and rewrites the MAC address

Note: 5-tuple: (Source IP, Destination IP, Protocol, L4 Source Port, L4 Destination Port)

Tables filled via P4Runtime (“PI”), BFRuntime, etc

table: ecmp_group (s1)

Match fields Action Action data

hdr.ipv4.dstAddr {drop, set_ecmp_select} bit<16> ecmp_base,
bit<32>
ecmp_count

10.0.0.1/32 set_ecmp_select ecmp_base=0,
ecmp_count=2

table: ecmp_nhop (s1)

Match fields Action Action data

meta.ecmp_select {drop, set_nhopt} bit<48> nhop_dmac,
bit<32> nhop_ipv4,
bit<9> port

0 set_nhop ndop_dmac=00:00:00:00:00:00:01:02,
nhop_ipv4=10.0.2.2,
port=2

1 set_nhp ndop_dmac=00:00:00:00:00:00:01:03,
nhop_ipv4=10.0.3.3,
port=3

P4Runtime: configuring tables (2)

39

table: send_frame (s1)

Match fields Action Action data

egress_port {drop,
rewrite_mac}

bit<48> smac

2 rewrite_mac smac=00:00:00:01:02:00

3 rewrite_mac smac=00:00:00:01:03:00

Ingress pipeline
● Generate hash for packet (based on 5-

tuple)
● Table that matches on hash and

forwards the packet (changes
ethernet.dstAddr, ipv4.dstAddr,
egress_port)

Egress pipeline
● Define table that matches on egress_port

and rewrites ethernet.srcAddr to that of
the nearby switch

P4Runtime: configuring tables (3)

Materials

41

Documentation
● P4 guide: https://github.com/jafingerhut/p4-guide/tree/master/docs
● P4 official tutorials: https://github.com/p4lang/tutorials
● P4 tutorial (2018): https://bit.ly/p4d2-2018-spring
● P4_16 v1.2.0 spec: https://p4.org/p4-spec/docs/P4-16-v1.2.0.pdf
● P4 cheat sheet: https://github.com/p4lang/tutorials/blob/master/p4-cheat-sheet.pdf

Implementation sources
● P4 compiler: https://github.com/p4lang/p4c
● P4_16 commented application

Projects
● STRATUM project (switch OS for SDN): https://stratumproject.org
● GÉANT: R&E NOS; DDoS detection, FPGA compiling, etc: https://github.com/frederic-loui/RARE ;

https://wiki.geant.org/display/SIGNGN/2nd+SIG-NGN+Meeting
● ONOS controller with P4 support: https://wiki.onosproject.org/display/ONOS/P4+brigade

Materials (1): docs, sources and projects

https://github.com/jafingerhut/p4-guide/tree/master/docs
https://github.com/p4lang/tutorials
https://docs.google.com/presentation/d/1zliBqsS8IOD4nQUboRRmF_19poeLLDLadD5zLzrTkVc/edit
https://bit.ly/p4d2-2018-spring
https://p4.org/p4-spec/docs/P4-16-v1.2.0.pdf
https://github.com/p4lang/tutorials/blob/master/p4-cheat-sheet.pdf
https://github.com/p4lang/p4c
https://github.com/jafingerhut/p4-guide/blob/master/demo1/demo1-heavily-commented.p4_16.p4
https://stratumproject.org/
https://github.com/frederic-loui/RARE
https://wiki.geant.org/display/SIGNGN/2nd+SIG-NGN+Meeting
https://wiki.onosproject.org/display/ONOS/P4+brigade

● p4c-bm2-ss: compiles a P4 program (must be used with other steps to load the output in the switch/model)
○ Can compile on P4_14 and P4_16, based on target device, architecture, ...
○ --p4-runtime allows writing the control plane API description (i.e., rules to be installed on the devices)

p4c-bm2-ss --p4v 16 --p4runtime-files basic_tunnel.p4.p4info.txt basic_tunnel.p4

p4c-bm2-ss --arch v1model -o p4src/build/bmv2.json --Wdisable=unsupported \
--p4runtime-files p4src/build/p4info.txt p4src/some_proto.p4

● simple_switch_grpc: P4 software switch (codenamed “behavioural model v2 / bmv2”)
● PI: P4 Runtime -- API run-time update (w/o restarting control plane), extending schema to describe new features
● ptf: Packet Test Framework. Define Python unit tests to verify the behaviour of the dataplane
● scapy: generate packets for testing

from scapy.all import sendp, get_if_hwaddr, send, Ether, IP, TCP
import random
pkt = Ether(src=get_if_hwaddr("ens3"), dst="ff:ff:ff:ff:ff:ff")
pkt = pkt / IP(dst="10.102.10.56") / TCP(dport=1234,
sport=random.randint(49152,65535)) / "Payload data"
pkt.show2()
sendp(pkt, iface="ens3", verbose=False)

Materials (2): open-source tools

42

● Stratum: OS for SDN-enabled switches. Based on ONLPv2 and supporting Tofino and Broadcom Tomahawk devices.
A “stratum_${target}” binary (previously compiled per target/device) communicates Stratum with the device.

./bazel-bin/stratum/hal/bin/bmv2/stratum_bmv2 \
 --external_stratum_urls=0.0.0.0:28000 \
 --persistent_config_dir=${cfg_path}/stratum_cfg \
 --forwarding_pipeline_configs_file=${cfg_path}/p4_pipeline_config.pb.txt \
 --chassis_config_file=${cfg_path}/chassis_config.proto.txt \
 --bmv2_log_level=debug

Materials (3): open-source tools

43

pkt.emit()

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

