

SRv6 Technology Update

Pablo Camarillo

pcamaril@cisco.com February 2019

Segment Routing

- Source Routing
 - the topological and service (NFV) path is encoded in packet header
- Scalability
 - the network fabric does not hold any per-flow state for TE or NFV
- Simplicity
 - automation: TILFA sub-50msec FRR
 - protocol elimination: LDP, RSVP-TE, VxLAN, NSH, GTP, ...
- End-to-End
 - DC, Metro, WAN

Two dataplane instantiations

Segment Routing

MPLS

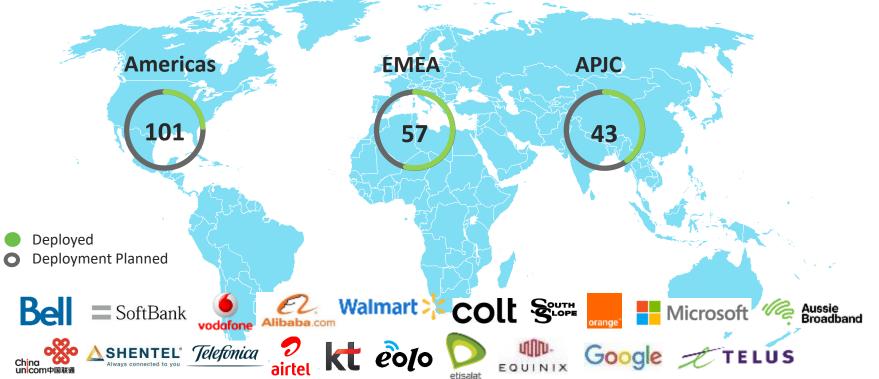
- leverage the mature MPLS HW with only SW upgrade
- 1 segment = 1 label
- a segment list = a label stack

IPv6

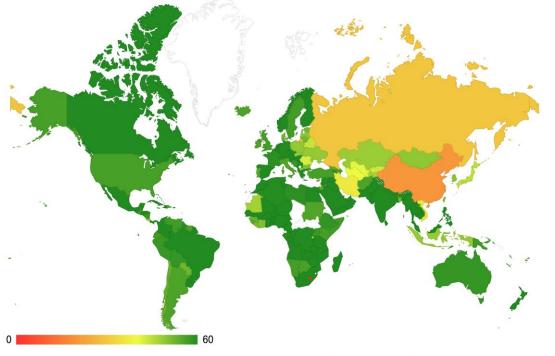
- leverages RFC8200 provision for source routing extension header
- 1 segment = 1 address
- a segment list = an address list in the SRH

Network Evolution

Service Protocols


Transport Protocols

LDP: Label Distribution Protocol, MP-BGP: Multi-protocol BGP, BGP-LU: BGP Labeled-Unicast, PCE: Path Computation Element, RSVP-TE: Reservation Protocol Traffic Engineering


SR-MPLS: de-facto IPv4 solution

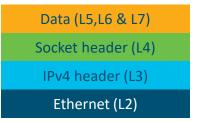
Let's focus on SRv6: SR for IPv6

IPv6 adoption is a reality

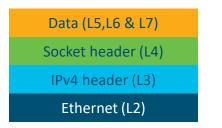
% Web pages available over IPv6

Sources: 6lab.cisco.com – Web content Cisco VNI Global IP Traffic Forecast, 2017-2022 Global IPv6 traffic grew 226% in 2017

Globally IPv6 traffic **will grow 18fold** from 2017 to 2022


IPv6 **will be 38%** of total Internet traffic in 2022

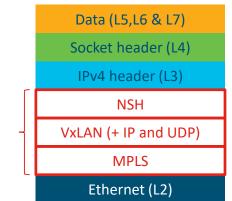
IPv6 provides reachability


IPv4 limitations & work-arounds

- \times Limited address space
- \times No engineered Load Balancing
- \times No VPN
- × No Traffic Engineering
- \times No Service Chaining

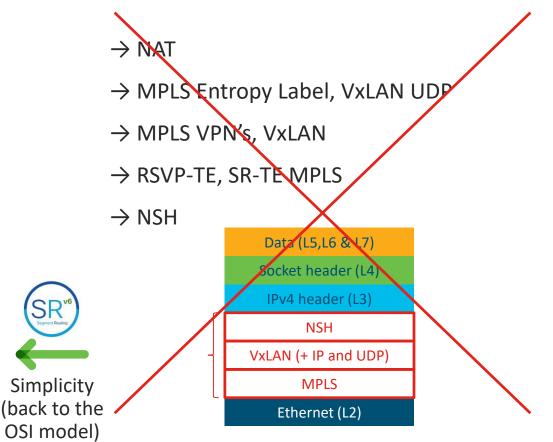
IPv4 limitations & work-arounds

- × Limited address space
- × No engineered Load Balancing
- \times No VPN
- × No Traffic Engineering
- × No Service Chaining

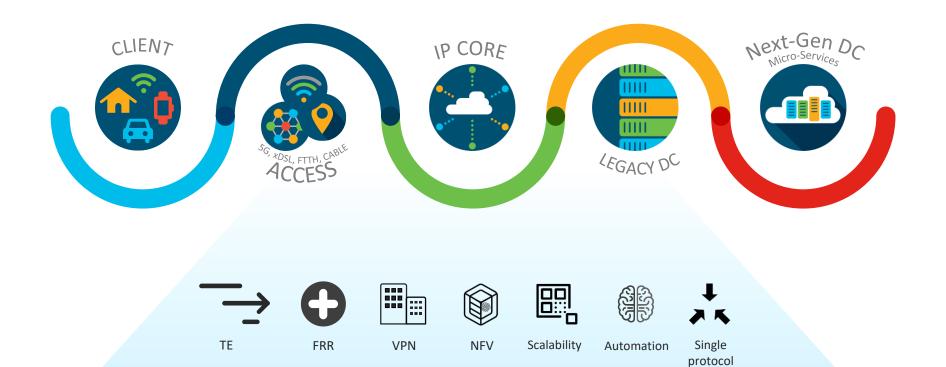


 \rightarrow NAT

- \rightarrow MPLS Entropy Label, VxLAN UDP
- \rightarrow MPLS VPN's, VxLAN
- \rightarrow RSVP-TE, SR-TE MPLS



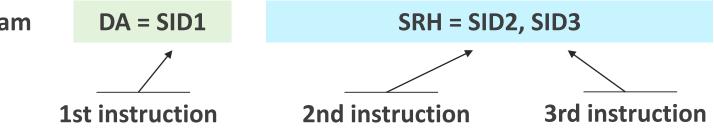
work-arounds



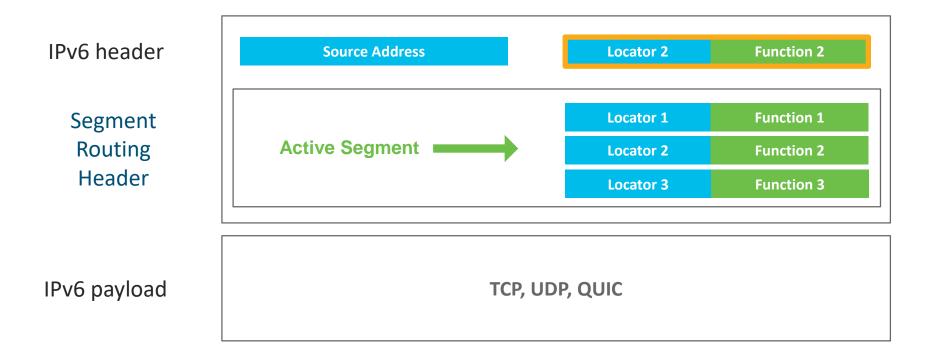
IPv4 limitations & work-arounds

- × Limited address space
- × No engineered Load Balancing
- \times No VPN
- × No Traffic Engineering
- × No Service Chaining

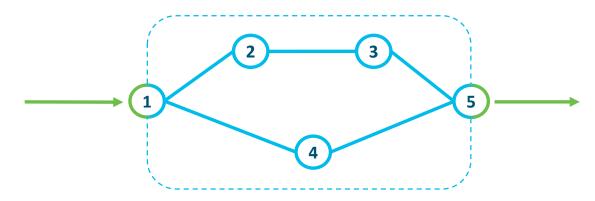
SRv6 unleashes IPv6 potential


© 2019 Cisco and/or its affiliates. All rights reserved.

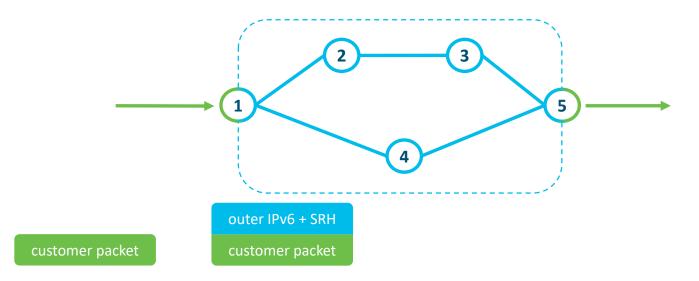
SR for anything: Network as a Computer


Network Programming

Network Program

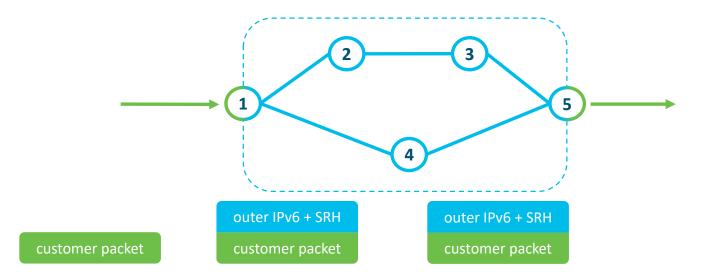

- A network program is a list of instructions (128-bit SRv6 SID)
- An instruction can be bound to any behavior
 - TE/FRR: END, END.X
 - VPN: END.DX, END.DT

Network Program in the Packet Header

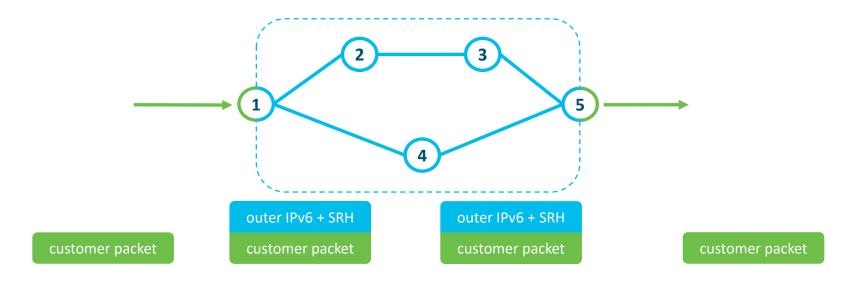


SRv6 Domain

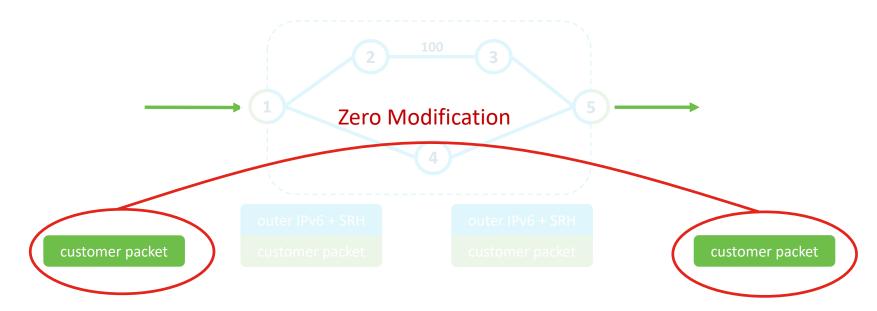
IPv6 enabled provider infrastructure SR Domain



Encapsulation at the Domain ingress


- IPv4, IPv6 or L2 frame is encapsulated within the SR Domain
- Outer IPv6 header includes an SRH with the list of segments

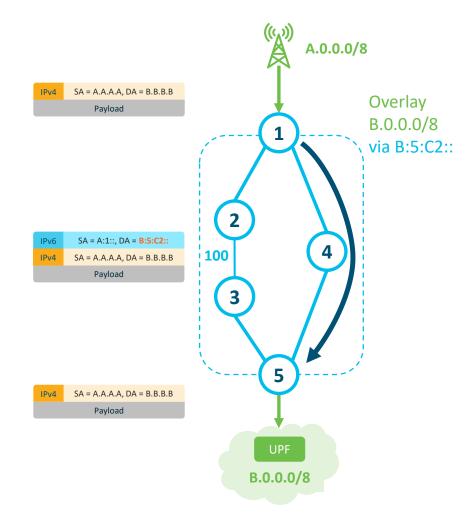
SRH of the outer IPv6 encapsulation


- Domain acts as a giant computer
- The network program in the outer SRH is executed

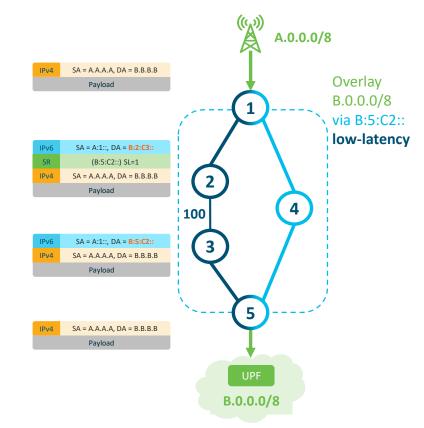
Decapsulation at Domain Egress

• Egress PE removes the outer IPv6 header as the packet leaves the SR domain

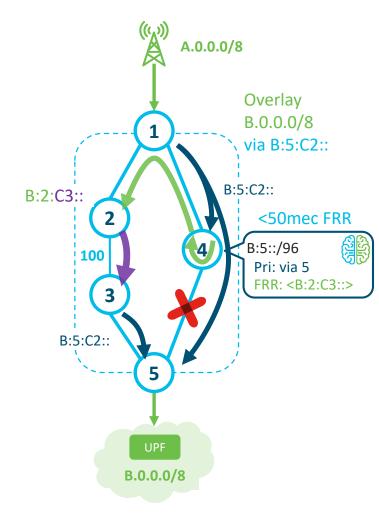
End-to-End Integrity


- End-to-end integrity principle is strictly guaranteed
 - Inner packet is unmodified
 - Same as SR-MPLS (MPLS stack is replaced by IPv6 outer header and SRH)

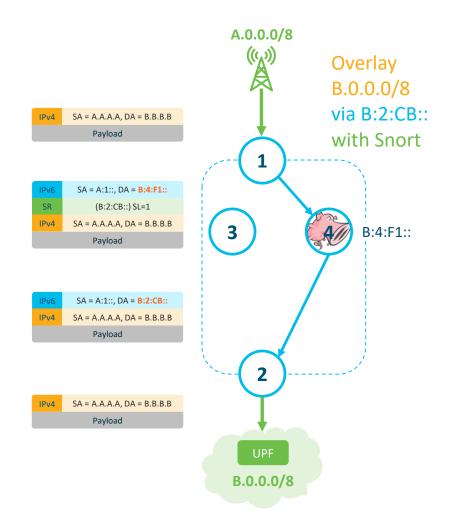
Deployment use-cases


Overlay VPN

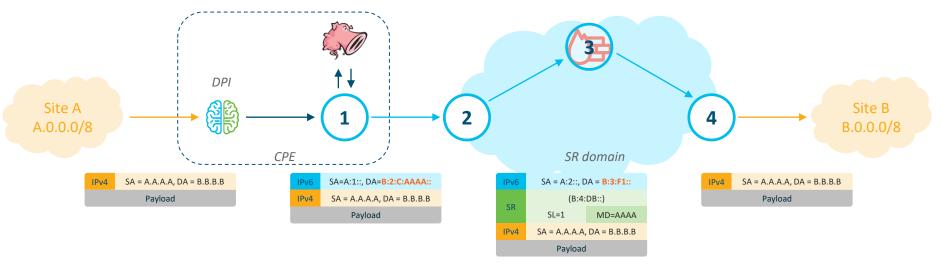
- Automated
 - No tunnel to configure
- Simple
 - Protocol elimination
- Efficient


Traffic Engineering

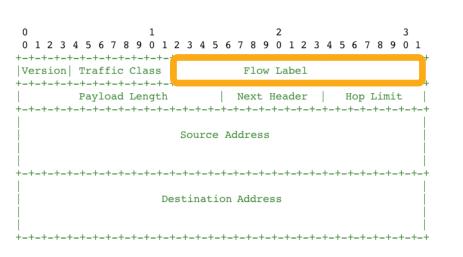
- Automated SR TE policy triggered by SLA color of BGP route
 - No RSVP, no tunnel
- Automated Steering
 - No PBR steering complexity
- Inter-domain calculated by SR PCE
- SR native algorithms


TILFA

- 50msec Protection upon local link, node or SRLG failure
- Simple to operate and understand
 - automatically computed by the router's IGP process
 - 100% coverage across any topology
 - predictable (backup = postconvergence)
- Optimum backup path
 - leverages the post-convergence path
 - avoid any intermediate flap via alternate path
- Incremental deployment
- Distributed and Automated Intelligence


Integrated service chaining

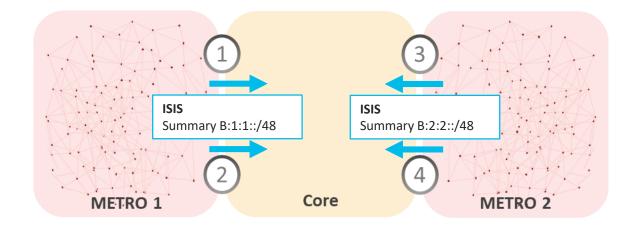
- Instruction bound to a Network Function
 - Just another type of segment
 - Stateless in the fabric
 - Seamless integration with VPN and TE
- NF can leverage the SRH
 - Implement branching operation
 - Read / write metadata
- Open-source SR-aware NFs
 - Snort, iptables, nftables
 - Leverage native SRv6 support in Linux kernel



SRv6 service programming with metadata

- DPI inspects the traffic and indicates the classification result as a SID argument
- CPE may also perform some local service chaining (e.g. via Snort)
- Node 2 steers the traffic in an SR policy and copies the DA argument in an SRH TLV
- Firewall node 3 leverages this SRH metadata for smarter packet filtering

Load-balancing



- 20-bit entropy
- No additional protocol
 - infamous mpls entropy label

Seamless Incremental Deployment

- As soon as the network supports plain IPv6 forwarding
 - A new SRv6-VPN service only requires PE upgrade
 - TE objective can be achieved with a few well selected TE waypoints
 - FRR is deployed incrementally

Prefix Summarization

- Back to basic IP routing and summarization
- No BGP inter-AS Option A/B/C

SRv6 Eco-System

At record speed

- In 2019: 8 large-scale commercial deployments
 - Softbank, Iliad, China Telecom, LINE corporation, China Unicom, CERNET2, China Bank and Uganda MTN.
- 18 HW linerate implementations
 - Cisco Systems, Huawei
 - Broadcom, Barefoot, Intel, Marvell, Mellanox
 - Multiple Interop Reports
- 11 open-source platforms/ Applications
 - Linux, FD.io VPP, P4, iptables, nftables, snort, ExaBGP, Contiv-VPP

• First commercial SRv6 deployment

https://newsroom.cisco.com/press-release-content?type=webcontent&articleId=1969030

材料開発ナノ解析	5Gデータ送信 効率化へ新規格
材料開発ナノ解析	
原理計算」「分子動力学 計算」などには、多くの 計算」などには、多くの が専問とコンピューターが 必要になる。 に応じて要命するため、 などでもつちンフトウェア。	シンプルで低コスト キットワークをシンプルにする など、日日の部々としった。 電理に日からしている など、日日の部々としった。 電理に日からしている 電理に日からいで、 で、 日ののかり、 日本のり、 日本のり 日本のり 日本のり 日本のり 日本のり 日本のり 日本のり 日本のり
シン工科大(N1-1)が シン工科大(N1-1)が スプロジェクト」との連 教ペース「マテリアル タペースには深々な材料 の所有相互が意見されて	ドート・マークを効率的に伝道ニコストドボ レートアドレススが経営運動を行いていため、 サークをないましたので、 サークをないたにし、 サークをないたにし、 サークをないたしていため、 サークの伝述に出りめていたが経営運動を行いたのにない。 サークの伝述に出りわせいため、 サークの伝述にないたいでは、 「パートアドレススが経営運動を行いた」
⊧動画アプリ ム、配信開始 優とやりとり	1・トアドレスを変換し、 市トアドレスを変換し、 市トアドレスを変換し、 市トアドレスを変換し、 市トアドレーン、 になった。 市場とたるのが「トート・ルル理 に割損いたくたる。」 ですいた、 に、 の次で量量コストをある。 市場上たるのが「トート・ルル理 相になる。 、 に、 したのな気化」の気候 間一次の、 に、 に、 に、 のない、 で 着量コストをある。 し、 に、 に、 のがあたまるこの、 で 着用で、 たるのが「トート・ルル理 相になる。 、 に、 に、 のない、 で 着量コストをある。 し、 に、 一日のない、 で 着にするのが、 で 着に、 に、 のがまた、 のない、 で 着に、 に、 のない、 で 着に、 に、 のない、 で 着に、 に、 のない、 で 着に、 に、 のない、 で 着に、 に、 のない、 で し、 のない、 で し、 に、 のない、 で し、 に、 のない、 で し、 に、 のない、 で し、 に、 のない、 で し、 に、 のない、 で し、 のない、 で し、 のない、 で し、 のない、 で し、 、 のない、 で し、 、 のない、 で し、 、 のない、 で し、 、 のない、 で し、 、 のない、 で し、 、 の、 で し、 、 の、 で し、 、 の、 、 の、 の、 で し、 、 の、 で し、 、 の、 の、 で し、 、 の、 の、 の、 の、 で し、 、 の、 の、 で し、 、 の、 の、 の、 の、 の、 の 、 の、 の、 の、 の 、 の
は5日、スマートフ たいの見聴着とコ スシートーーの提供を スシートーー」の提供を スシートをやりとりして	、 、 、 、 、 、 、 、 、 、 、 、 、

iliad

- Nationwide deployment in Italy
- 1000 Cisco NCS 5500
- 1800 Iliad Nodeboxes

Re: [spring] SPRING SRv6 Deployment Status draft

Sébastien Parisot <sparisot@free-mobile.fr> | Tue, 10 December 2019 09:34 UTC | Show header

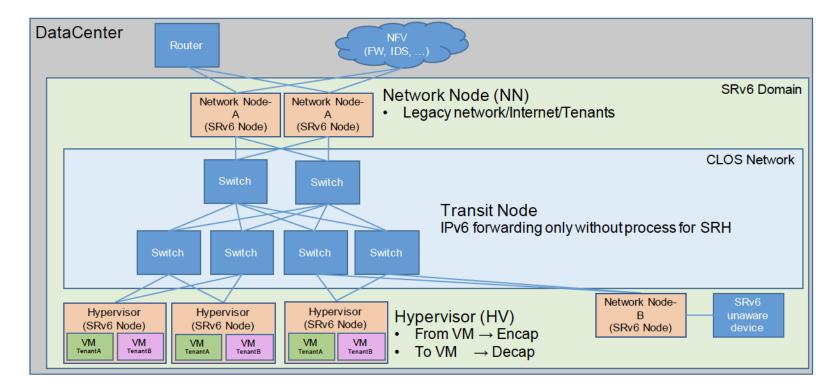
Hi Satoru, Zafar,

I would like to provide an update to SRv6 deployment in Iliad's nationwide network in Italy.

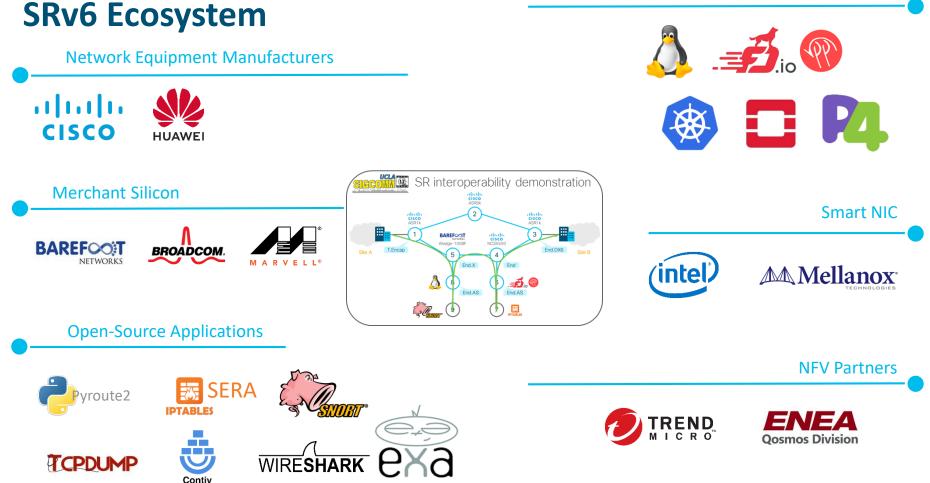
As of the end of 2019, the SRv6 network consists of:

- 1000 Cisco NCS 5500 routers
- 1800 Iliad's Nodeboxes
- The network services 4.5 million mobile subscribers (as of Q3 2019)
- The network is carrying 300 Gbps of commercial traffic at peak hours
- It is expected to grow to more than 4000 Nodeboxes in 2020.

The following SRv6 features have been deployed:


- A Segment Routing Header based data plane
- End (PSP), End.X (PSP), End.DT4, T.Encaps.Red, T.Insert.Red functions
- BGP VPN SRv6 extensions
- ISIS SRv6 extensions
- SRH-based Topology Independent (TI-LFA) Fast Reroute mechanisms
- Support for ping and traceroute

Can you please update the SRv6 deployment draft accordingly?


Thanks, Sébastien

Open-Source Networking Stacks

Shipping: Cisco NCS5500, NCS560, NCS540, ASR9k • SRv6-SR-MPLS Gateway

- ISIS
 - TILFA and uLoop
 - Flex-Algo (Low-Delay Slice) with TILFA
- BGP
 - PIC Core/Edge
 - L3VPN (IPv4)
 - Internet (IPv4)
 - eVPN VPWS

- OAM
 - Ping
 - Trace
 - SID Verification

Shipping: DC – Cisco Nexus 9K GX series

Nexus 9K Platforms

- 16 X 400G
- 28x100G+8x400G
- 64x100G

N9K-C9316D-GX

N9K-C93600CD-GX

N9K-C9364C-GX

SRv6 forwarding performance


- 400G Line-rate Performance for SRv6
- 6.4 TBPS Packet Processing
- Insert up to 9 SIDs @ line-rate

- IS-IS, OSPFv3
- BGP
 - L3VPN (IPv4, IPv6)
 - Internet (IPv4,IPv6)
- VxLAN SRv6 gateway
- OAM
 - Ping
 - Trace
 - SID verification

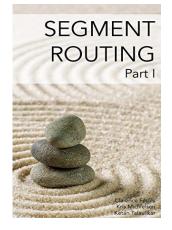
Conclusion

Simplicity Always Prevails

Furthermore with more scale and functionality

Segment Routing conclusion

- Strong industry support
- Fantastic deployment rate
- Bold architecture: network programming
- Numerous use-cases
 - FRR, TE, SDN, Overlay with SLA, NFV, Spray, SD-WAN, 5G & NS, ...



Partnering

- Track-record collaboration with operator
 - Focus on real operator needs
 - Seamless Deployment
 - Standardization
 - Multi-Vendor consensus
- Looking forward to working together

Stay up-to-date

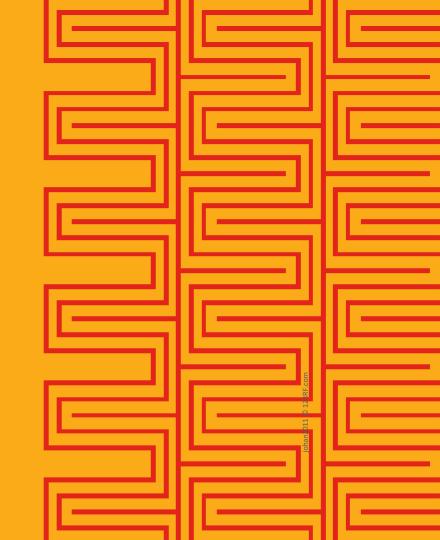
amzn.com/B01I58LSUO

amazon.com/dp/B07N13RDM9

twitter.com/SegmentRouting

facebook.com/SegmentRouting/

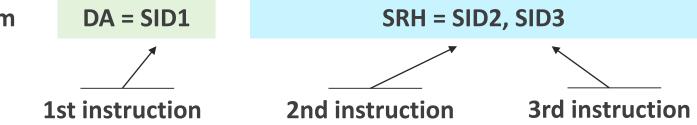
segment-routing.net


linkedin.com/groups/8266623

Thank you!

ask-segment-routing@cisco.com

Micro-Program



A new set of (micro)-instructions

- Full leverage of SRH encapsulation
 - Zero extension
- Full leverage of SRv6 control-plane
 - Zero extension

Network Program

Network Program

- A network program is a list of instructions (128-bit SRv6 SID)
- An instruction can be bound to any behavior
 - TE/FRR: END, END.X
 - VPN: END.DX, END.DT

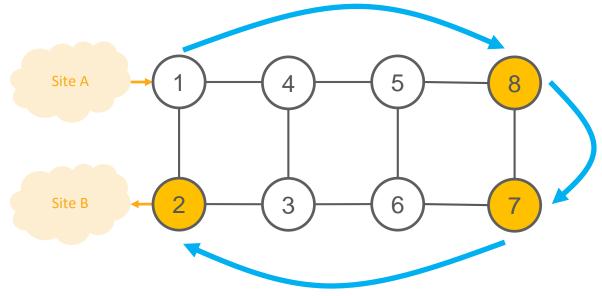
Any instruction could hold a micro-program

Network ProgramDA = SID1SRH = SID2, SID3Ist instruction
carries a micro-
programIst instruction
programIst instruction
program

Any instruction could hold a micro-program

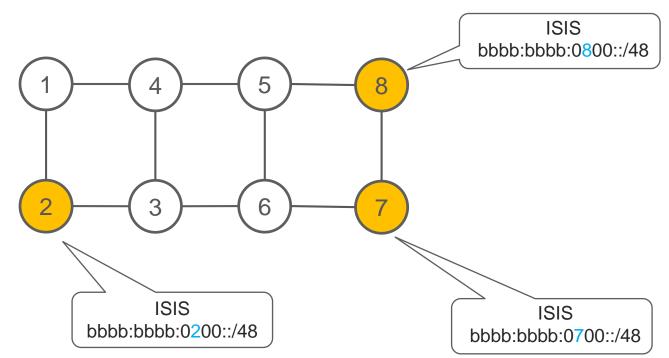
Micro-Program in an SRv6 SID

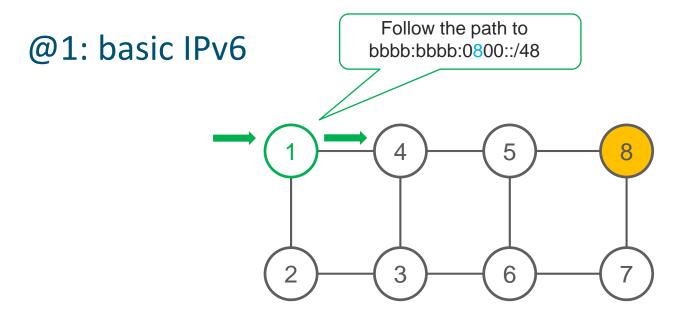
SRv6 SID = 128 bits = 8 groups of 4 nibbles

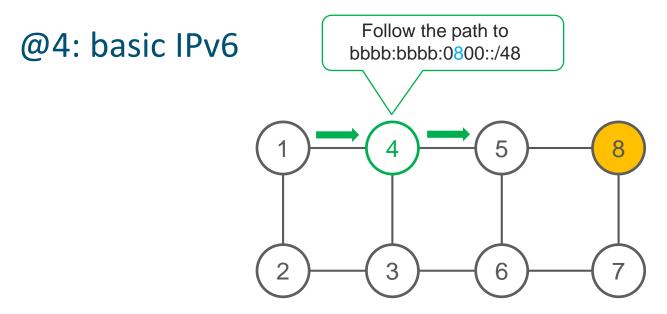

Assuming an allocation block in /32 (B:B::/32)

Assuming a micro-instruction ID in 4 nibbles

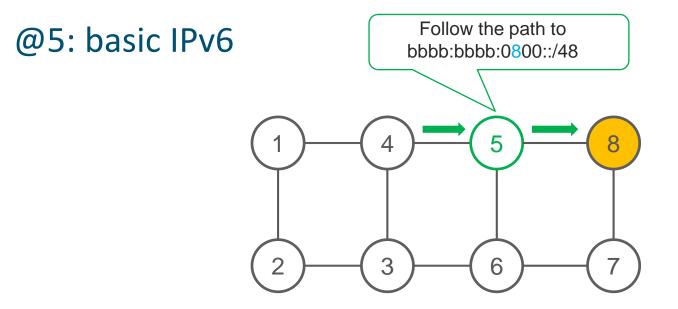
B:B:uID1:uID2:uID3:uID4:uID5:uID6

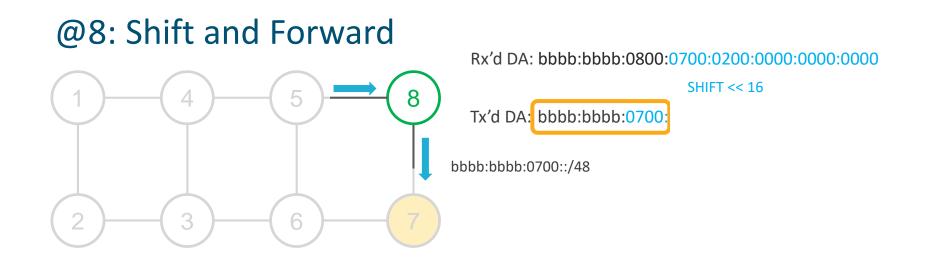

6 micro instructions per SRv6 Instruction

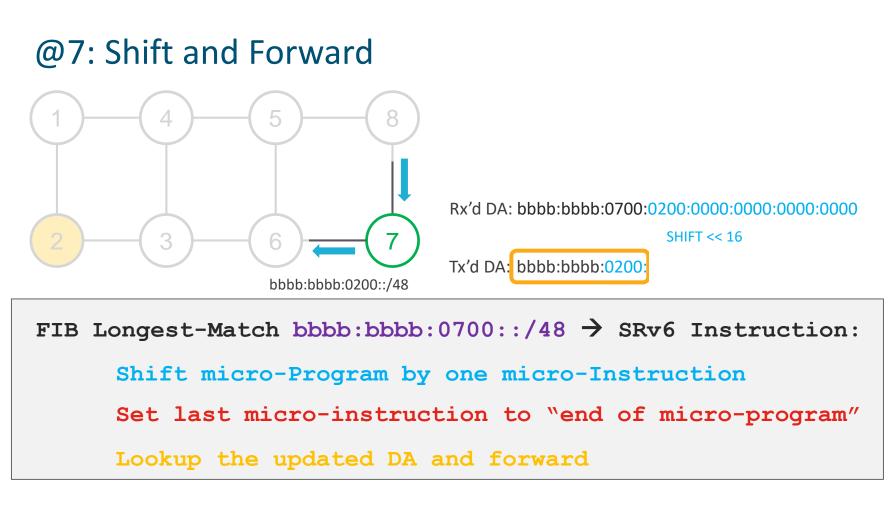

Illustration: go to 8 then 7 then 2 and decaps

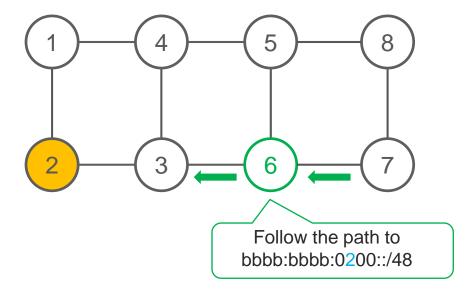

One single micro-program in the DA is enough DA = bbbb:bbbb:0800:0700:0200:0000:0000

Basic IP Routing: no new extension

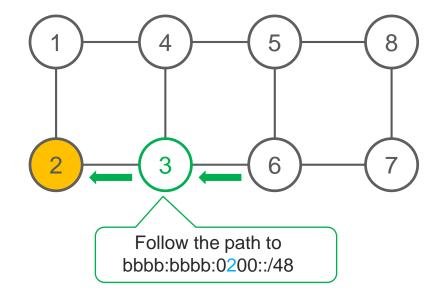



DA = bbbb:bbbb:0800:0700:0200:0000:0000

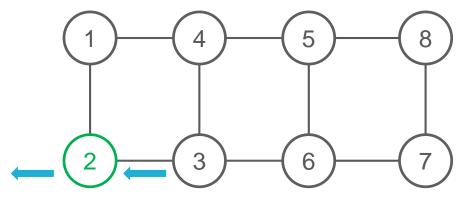

DA = bbbb:bbbb:0800:0700:0200:0000:0000


DA = bbbb:bbbb:0800:0700:0200:0000:0000

FIB Longest-Match bbbbb:bbbb:0800::/48 → SRv6 Instruction: Shift micro-Program by one micro-Instruction Set last micro-instruction to "end of micro-program" Lookup the updated DA and forward



@6: basic IPv6


DA = bbbb:bbbb:0200:0000:0000:0000:0000

@3: basic IPv6

DA = bbbb:bbbb:0200:0000:0000:0000:0000

@2: SRv6 End.DX4 behavior

Rx'd DA: bbbb:bbbb:0200:0000:0000:0000:0000

FIB Longest-Match bbbb:bbbb:0200:0000::/64 > SRv6 Instruction:

Decapsulate and cross-connect inner IPv4 packet to Site B

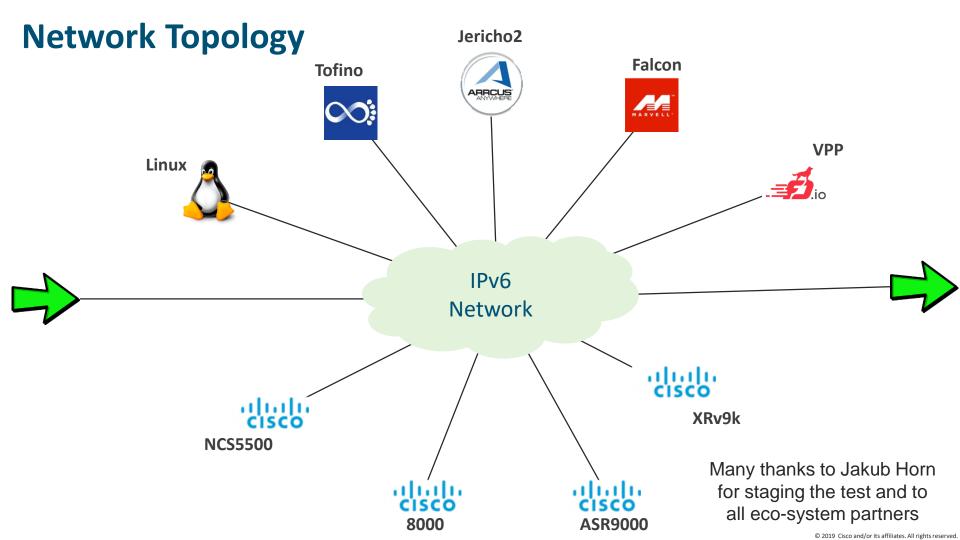
Benefits

- Ultra-scalable for 5G deployment
 - 18 FRR, TE, NFV and VPN micro-instructions in only 40 byte SRH overhead
- Mathematically the best SRv6 compression solution
- Linerate for multi-Tbps hardware
 - Shift is a basic hardware logic
- Friendly to merchant silicon
 - Proven by endorsement and interop
- Friendly to legacy equipment

No Cost

- Full leverage (zero change) to SRv6
 - Net PGM model
 - SRH encapsulation
 - Control Plane
- Seamless Deployment on IPv6 host

Alibaba



- Dennis Cai reports successful milestone in January 2020
 - SRv6 micro-program linerate hardware verification in Cisco lab
 - Cisco 8000 series (silicon one), NCS-5500, ASR9k
- Use-case
 - Applications are already IPv6 enabled
 - Network is already IPv6-enabled
 - Seamless end-to-end SDN control from Apps through DC, Metro, Backbone

Bell Canada

- Dan Voyer reports successful milestone in January 2020
 - SRv6 micro-program linerate hardware verification
 - Cisco 8000 series (silicon one), NCS-5500, ASR9k, CRS-X
- Use-case: 5G with
 - Ultra Scale
 - Protocol simplification and IPv6 convergence
 - Integrated TE, FRR, Slicing, VPN and NFV for end-to-end value-added service
 - Optimum Load-Balancing
 - Legacy reuse, CRS-X

